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Summary

Recently, massive functional data have been widely collected over space across a set of grid points 

in various imaging studies. It is interesting to correlate functional data with various clinical 

variables, such as age and gender, in order to address scientific questions of interest. The aim of 

this paper is to develop a single-index varying coefficient (SIVC) model for establishing a varying 

association between functional responses (e.g., image) and a set of covariates. It enjoys several 

unique features of both varying-coefficient and single-index models. An estimation procedure is 

developed to estimate varying coefficient functions, the index function, and the covariance 

function of individual functions. The optimal integration of information across different grid 

points are systematically delineated and the asymptotic properties (e.g., consistency and 

convergence rate) of all estimators are examined. Simulation studies are conducted to assess the 

finite-sample performance of the proposed estimation procedure. Furthermore, our real data 

analysis of a white matter tract dataset obtained from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) study confirms the advantage and accuracy of SIVC model over the popular 

varying coefficient model.
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1. Introduction

As a semiparametric regression modelling strategy, single-index modelling has attracted 

much attention in the literature due to its balance between exibility and fidelity. A classical 

single-index model is often written as
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(1)

where Y is a response variable, g(·) is an unknown index function, X is a covariate vector, 

and ε is an error term such that E(ε|X) = 0. See Horowitz (2009) for a comprehensive review 

of various estimation methods for single-index models and references therein (Li, 1991; 

Cook and Weisberg, 1991; Zhu et al., 2010; Xia et al., 2002; Xia, 2007; Ma and Zhu, 2012, 

2013). For instance, dimension reduction approaches, such as likelihood-based methods 

(Cook and Forzani, 2009), are also commonly used for estimation. However, the existing 

literature primarily considers univariate response observed from cross-sectional studies.

This paper is motivated by the analysis of a real diffusion weighted imaging (DWI) data set 

with n = 213 subjects collected from NIH Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) study. For each subject, we calculated a Fractional Anisotropy (FA) curve at all the 

83 grid points along the skeleton of the midsagittal corpus callosum as shown in Figure 1. 

We are interested in establishing an association between FA curves and several covariates of 

interest, such as age and gender. To establish such association, standard grid-wise methods 

are to fit a linear model to functional observations at each grid point as responses and 

clinical variables, such as age and gender, as covariates, and to generate a statistical map of 

test statistics or p-values across all grid points (Lazar, 2008;Worsley et al., 2004). These 

grid-wise methods have several major limitations. First, compared with model (1), the 

classical linear model used in the neuroimaging literature is often restrictive, since it 

assumes that the index function g(·) is an identity function. When g(·) is truly nonlinear, 

directly fitting a classical linear model can cause substantial efficiency loss and reduce 

prediction accuracy. Second, since the grid-wise methods treat all grid points as independent 

units, they ignore two key functional features of functional data including spatial smoothness 

and spatial correlation.

Some advanced methods have been developed to specifically incorporate these features by 

using function-on-scalar regression under the functional data analysis (FDA) framework 

(Zhu et al., 2012; Ramsay and Silverman, 2005; Staicu et al., 2010; Zhang and Chen, 2007; 

Reiss et al., 2010). Some important estimation methods for FDA include adaptive smoothing 

methods (Polzehl and Spokoiny, 2006; Li et al., 2011), the integration of FDA and adaptive 

smoothing methods (Zhu et al., 2014), and spatial priors within the Bayesian framework 

(Gossl et al., 2001; Penny et al., 2005; Bowman et al., 2008; Smith and Fahrmeir, 2007; Yue 

et al., 2010; Miranda et al., 2013), among others. See Morris (2015) and Wang et al. (2015) 

for a comprehensive review of various FDA models for functional responses. However, to 

the best of our knowledge, none of the references cited above address the two functional 

features and estimate the nonparametric index function simultaneously.

The aim of this paper is to develop a single-index varying coefficient (SIVC) model to 

establish a varying association between functional responses and a set of covariates. 

Specifically, we extend the single-index model (1) to SIVC for functional responses as 

follows:
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(2)

where {Y (s) : s ∈ } is an observed stochastic process on a compact set  and ε(s) is a 

random function characterizing the within-subject correlations and measurement errors at 

different grid points such that E{ε(s)|X} = 0 for all s ∈ . The β(s) allows us to characterize 

the dynamic association between covariate X and functional response, whereas g(·) is a 

nonparametric function, while being fixed across all s ∈ . Model (2) differs from the 

functional single index model in Jiang and Wang (2011), in which g(·) varies across s, but 

β(s) is assumed to be stationary. When g(x) = x, model (2) reduces to standard voxel-wise 

methods based on linear model and the most popular FDA model considered in (Zhang and 

Chen, 2007; Ramsay and Silverman, 2005; Zhu et al., 2014). For notational simplicity, we 

set  = [0, 1]. The results can be readily extended to more general cases with compact 

subset  of the Euclidean space.

Compared with the existing literature, we make several unique contributions. (i) We develop 

a new estimation procedure to estimate various parametric and non-parametric components 

of SIVC. (ii) Theoretically, we delineate the integration of information across all grid points 

by using an optimal weight function and then establish the asymptotic properties of various 

estimates for SIVC. (iii) Our analysis of the ADNI data confirms the advantage and accuracy 

of SIVC model over the popular varying coefficient model (Zhang and Chen, 2007; Ramsay 

and Silverman, 2005; Zhu et al., 2014).

The rest of this paper is organized as follows. Section 2 introduces the estimation procedure 

to estimate varying coefficient functions, index function, and the covariance function of 

individual functions. Section 3 systematically investigates the asymptotic properties of all 

estimators. A simulation study and a real data analysis of Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) study are presented in Section 4 to demonstrate the finite 

sample performance of SIVC. Section 5 concludes with some discussions.

2. Methods

2.1 Single-index Varying Coefficient Model

We formally introduce the single-index varying coefficient model as follows. Consider 

{({Yi(s) : s ∈ }, Xi) : i = 1, …, n} from n independent subjects, where  is a compact set 

that characterizes the range of all possible grid points. Our single-index varying coefficient 

(SIVC) model is written as

(3)

where Xi is a p × 1 covariate vector, β(s) = (β1(s), ⋯, βp(s))T is a p × 1 vector of varying 

coefficient functions, g(·) is an unknown index function, ηi(s) characterizes individual curve 

variations, and εi(s) is a random function of measurement errors. The process {ηi(s) : s ∈ } 

is assumed to be a Gaussian process with zero mean and a covariance function Ση(s, t) = 
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Cov{η(s), η(t)}. The error terms εi(s) follow a Gaussian process with zero mean and a 

diagonal covariance function Cov{ε(s), ε(t)}. That is, εi(s) and εi(t) are assumed to be 

independent for s ≠ t, and Cov{ε(s), ε(t)} takes the form of , where 1(·) is an 

indicator function. Moreover, Yi(s) are usually measured at the same set of locations for all 

subjects and exhibit both the within-curve and between-curve dependence structures. Thus, 

without loss of generality, it is assumed that Yi(s) are observed on M grid points M = {sm : 

0 = s1 ≤ ⋯ ≤ sM = 1} for all subjects.

For single index model, β(s) is not identifiable since g(XT β(s)) and g(β0(s) + δXT β(s)) are 

not distinguishable, where δ is any nonzero scalar. A simple solution in the literature (Zhu et 

al., 2010; Xia et al., 2002) is to impose some constraints on β0(s) and β(s), such as β0(s) = 0 

and β(s)T β(s) = 1. Therefore, throughout the paper, it is assumed that X does not contain the 

intercept, β(s)T β(s) = 1 holds for all s ∈  and the first entry of β(s) is positive at each s.

2.2 Estimation Procedure

Our estimation procedure consists of three steps for estimating the varying coefficient 

functions β(·), the index function g(·), and the covariance function Ση(s, s′).

Step I. Estimating varying coefficient β(s)—We first consider the estimation of β(sm) 

at each given grid point sm. Model (3) reduces to a classical single-index model given by

(4)

where  such that  and 

. The likelihood function of a random 

observation (X, Y (sm)) in model (4) is given by

where f1 is the probability density function of X, and f2 is the conditional probability density 

function of ε*(sm) = Y (sm) − g(XT β(sm)) given X.

Based on the Gaussian assumption of , f2(·) is the normal density with mean zero and 

variance . Thus, the score function for β(sm), denoted as S(β(sm)), is given by

(5)

where ġ(t) = dg(t)/dt. Following the reasoning in Ma and Zhu (2014), (I) and (II) belong to 

the tangent space of model (4) with respect to β(sm), denoted by Λg(sm), and its orthogonal 
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component, denoted by Λg(sm)⊥, respectively. For any s ∈ , Λg(s) and Λg(s)⊥ are, 

respectively, given by

Therefore, the efficient score function for β(sm) is given by

(6)

To calculate an efficient estimator of β(sm), denoted as β̃(sm), we can solve

(7)

Since Seff depends on three unknown quantities E{X|XT β(sm)}, g(XT β(sm)) and ġ(XT β 
(sm)), we construct their nonparametric estimators as follows (Ma and Zhu, 2013). The 

Nadaraya-Watson kernel estimator of E{X|XT β(sm)} is given by

(8)

where Kh(·) = K(·/h)/h is a kernel function and hx is a given bandwidth. We can calculate the 

estimates of g(XT β(sm)) and ġ(XT β(sm)) at XT β(sm) = XT β0(sm), denoted by ĝ(XT 

β0(sm)) and ġ̂(XT β0(sm)), by minimizing

(9)

As suggested by Ma and Zhu (2014), we set hx = cn−1/3 and hy = cn−1/5, where c is the 

average standard deviation of X. By plugging Ê{X|XT β(sm)}, ĝ(XT β0(sm)) and ġ̂(XT 

β0(sm)) into (7), we get an estimate of Seff(β(sm); Xi, Yi(sm)), denoted by Ŝeff(β(sm); Xi, 
Yi(sm)) and then calculate β̃(sm) by solving
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(10)

To estimate β(s) at any s ∈ , we need to construct a weighted estimating equation to 

borrow information across all grid points by using the functional features of imaging data 

(Wang et al., 2004; Zhu et al., 2012; Polzehl and Spokoiny, 2006; Li et al., 2011). 

Specifically, the weighted estimating equation is given by

(11)

where w(sm, s) is a weight function of (sm, s) and may depend a few parameters, such as 

bandwidth. Then, we calculate an estimate of β(s), denoted by β̂(s), by solving the following 

equation:

(12)

A critical issue in (12) is how to select an optimal weight function w(sm, s). Theoretically, 

one may choose w(sm, s) by minimizing the mean integrated squares error (MISE) of β̂(·) for 

all s ∈ , but it can be challenging due to the lack of precise information about β(s). 

Without such information, a simple solution is to set w(sm, s) = K((sm − s)/h)/h and then 

select the bandwidth h by using some criteria, such as cross-validation method, based on 

MISE. Furthermore, when β(s) is a piecewise constant function, we will show how to 

optimally select w(sm, s) in Section 3.

Step II. Estimating the unknown index function g(·)—We use the local linear 

technique to estimate g(XT β(s)). We define  and

where Z⊗2 = ZZT for any vector Z. By replacing β(sm) by β̂(sm), we get Ẑi,m(s) and Σ̂(XT 

β(s), h1). Denote G(XT β (s)) = (g(XT β (s)), h1ġ(XT β (s)))T, we directly minimize a 

weighted least square function given by

(13)

Thus, we have ĝ(XT β(s)) = [1 0]Ĝ (XT β (s)), where Ĝ (XT β(s)) is given by
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The bandwidth h1 is chosen by using the cross-validation method.

Step III. Estimating the covariance function Ση(s, t)—Let di(s) = (ηi(s), h2η̇
i(s))T, 

Wm,s = (1, (sm−s)/h2)T, and . We minimize the following 

function

(14)

to obtain

Then, η(s) can be estimated by

(15)

where , which is the 

empirical equivalent kernel. The bandwidth h2 is also chosen by using the cross-validation 

method.

We consider the spectral decomposition of Ση(s, t) and its approximation. Suppose Ση(s, t) is 

continuous on 2, then according to Mercer’s theorem, it can be decomposed as

where λ1 ≥ λ2 ≥ ⋯ ≥ 0 are ordered eigenvalues and ψk(s) are the corresponding 

orthonormal eigenfunctions. Furthermore, the eigenfunctions form an orthonormal system 

on the space of square-intergrable function on , and ηi(s) admits the Karhunen-Loeve 

expansion as , where  is the k-th functional 

principal component scores of the i-th subject. For a fixed i, ξik are uncorrelated random 

variables with mean zero and variance λk.
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By following Rice and Silverman (1991), the covariance matrix Ση(s, t) and its spectral 

decomposition can be estimated by

(16)

where λ̂
1 ≥ λ̂

2 ≥ ⋯ ≥ 0 are estimated eigenvalues and ψ̂
k(s) are the corresponding estimated 

eigenfunctions. Moreover, the k-th functional principal component scores can be computed 

by  for i = 1, …, n.

2.3 Simultaneous Confidence Bands

Given a Confidence level α, we construct a simultaneous Confidence band for each βl(s) 

such that  where  and  are 

the lower and upper limits of simultaneous Confidence band, respectively. Specifically, we 

set

(17)

where bias(βl̂(s)) is the bias of β̂l(s) at s ∈  and Cβl(α) is a scalar. By following the 

arguments in Zhu et al. (2012), we use the local polynomial technique to estimate bias(β̂l(s)) 

for each l and then approximate Cβl(α) by using the wild bootstrap as follows:

• Step 1: We calculate  for all i and m.

• Step 2: For q = 1, …, Q, we independently generate {  : i = 1, ⋯, n} 

from N(0, 1) and construct . Then, 

based on {Yi(sm)(q)}, we recalculate β̂(s)(q), and obtain a stochastic 

process Gβl(s)(q) = | β̂l(s)(q) − β̂l(s)(q)| for each l.

• Step 3: For all q, we calculate the 1 − α empirical percentile of Gβl(s)(q), 

denoted by Cβl(s, α), at each s ∈ . Finally, an estimate of Cβl(α) is sups |

Cβl(s, α)|.

Similarly, for a given α, we construct a simultaneous Confidence band for g(·) as follows:

where  is a compact set in R and ĝL,α(u) and ĝU,α(u) are the lower and upper limits of 

simultaneous Confidence band, respectively. Specifically, we set

(18)
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Subsequently, we use the local polynomial technique to estimate bias(ĝ(u)) and then use the 

wild bootstrap to approximate Cg(α) as follows:

• Step 1: We calculate  for all i and m.

• Step 2: For q = 1, …, Q, we independently generate {  : i = 1, ⋯, n} 

from N(0, 1) and construct . Then, 

based on {Yi(sm)(q)}, we recalculate ĝ(·)(q), and obtain a stochastic 

process Gg(u)(q) = |ĝ(u) − ĝ(u)(q)|.

• Step 3: For all ℓ, we calculate the 1 − α empirical percentile of Gg(u)(q) 

denoted by Cg(u, α) at every u ∈  and then approximate Cg(α) by using 

supu∈  |Cg(u, α)|.

3. Theoretical Results

3.1 Optimal weight Functions

We consider a challenging issue of optimally selecting the weight function w(sm, s) in order 

to gain efficiency, since ŜnM (β(s);w) for a given weight function w(·, ·) may not be an 

efficient estimating equation. Specifically, Λg(s) and Λg(s′) may interact with each other for 

s ≠ s′ by noting that

(19)

Therefore, Λg(s) and Λg(s′) are orthogonal with each other for s ≠ s′ if and only if Ση(s, s′) 

= 0 for s ≠ s′. It also holds for {Λg(s)⊥ : s ∈ } due to Λg(s) ⊥ Λg(s)⊥.

First, we consider how to choose the weight function when β(s) = β0 does not vary across s 

∈ . With some calculations, we can show that the covariance matrix of  can be 

approximated by

(20)

where w(s) = (w(s1, s), ⋯, w(sM, s))T and D(w(s)) is given by

(21)

We can obtain an optimal weight vector, denoted by w*, by minimizing Σ1(w(s)) such that 

w* = argminw(s)Σ1(w(s)). As shown in Theorem 1 (i) below, w* is associated with the 
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eigenvalue-eigenvector pairs of , denoted by {(λm*,M, ψm*,M) : m = 1, …, 

M}, where Ση*,M = (Ση(sm, sm′)) and  are two M × M matrices.

Second, we set ω(sm, s) as Kh(sm − s), which is a kernel function of (sm − s)/h, when β(s) 

may vary across s ∈ . If h → 0, then it can be shown that the covariance matrix of 

can be approximated by Σ1(w(s)) in (20). We will show in Theorem 1 (ii) that the use of the 

kernel function can lead to substantial efficiency gain even under this general scenario.

Theorem 1—We have the following results.

i. Suppose that β(s) = β0 does not vary across s ∈ . The optimal w* is 
given by

(22)

where ‖·‖2 is the Euclidean norm of a vector, Σε*,M = Ση*,M+Λε*,M is an 
M×M matrix, and 1M is an M × 1 vector of ones. Thus, the optimal D(w) 

is given by  and is independent of s. The 

 can be written as

(23)

ii. Suppose that β(s) may vary across s ∈ . Under Assumptions (C6) and 
(C7), if w(sm, s) = Kh(sm − s), h → 0, and Mh → ∞, then D(w(s)) can be 
approximated by Ση(s, s).

Theorem 1 has several interesting implications. If Ση(s, s′) = 0 for any s ≠ s′, then w* is 

proportional to . In this case, we can set 

 for all m, and then the optimal weighted estimating equation is given by

Theorem 1 (i) also implies that in general cases, w(sm, s) is given by
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where em is an M × 1 vector with the m-th element one and zero otherwise. For functional 

data, it is common to assume that λm*,M = 0 for all m > K, where K is a positive integer. 

Under some additional conditions, it can be shown that λm*,M and ψm*,M converge to the 

m–th eigenvalue and its corresponding eigenfunction of the covariance function Ση(s, s′)/

{σε(s)σε(s′)}, respectively.

Another implication of Theorem 1 (i) is the lower bound of D(w*). Specifically, D(w*) is 

given by

(24)

which is greater than . In general, the presence of 

spatial correlation increases the covariance matrix of β̂(s). Such lower bound is achievable 

only when Ση(s, s′) = 0 holds for any s ≠ s′. Furthermore, such lower bound is 

asymptotically achievable when λ1*,M = op(1), since x/(1 + x) is a monotone function of x.

Theorem 1 (ii) implies that the use of w(sm, s) = Kh(sm − s) can lead to substantial efficiency 

gain if there are substantial measurement errors. Specifically, if w(sm) = em, then we 

consider information at the m–th grid point. In this case, we have 

, which can be much larger than Ση(sm, sm) when  is 

much larger than Ση(sm, sm). The ratio of Σ1(e(sm)) over Σ1((Kh(sm−s))) is equal to 

. Therefore, the efficiency gain of using w(sm, s) = Kh(sm − s) can be 

substantial if the value of  is large.

3.2 Asymptotic Properties

Second, we investigate the asymptotic properties of β̂(·), ĝ(XT β̂(s)) and Σ̂η(s, t) when we set 

w(sm, s) = Kh(sm − s). For any smooth function f(s) and g(s, t), define ḟ(s) = df(s)/ds, f̈(s) = 

d2 f(s)/ds2 and g(a,b)(s, t) = ∂a+bg(s, t)/∂sa∂tb, where a and b are any nonnegative integers. We 

state the following theorems regarding the weak convergence of {β̂(s) : s ∈ } and ĝ(XT 

β̂(s)), whose detailed assumptions and proofs can be found in Web Appendix. Moreover, we 

also include additional asymptotic properties and their proofs in the same Web Appendix.

Theorem 2—Under Assumptions (C1)–(C11), as n, M → ∞, we have the following 
results.

i.

converges weakly to a Gaussian process with mean zero and covariance 
function, which is the limiting function of 

, where An(·) and Bi(·) 

are defined in Web Appendix.
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ii.  converges 
weakly to a Gaussian process with mean zero and covariance function 
Ση(s, t).

Theorem 2 ensures that we can make formal statistical inference on β(·) and g(·). Based on 

Theorem 2 (i) and (ii), we develop a wild bootstrap method to construct the Confidence 

bands of β̂(·) and ĝ(·) and include it in Section B of Web Appendix.

4. Numerical Studies

4.1 Simulation Results

We generated Y (sm) according to model (3) with ε(sm) ~ N(0, σ2 = 0.32) and Xi ~ N(0p, Σ), 

where Σ is a 4 × 4 matrix with elements ρ|j′−j| for j, j′ = 1, …, 4. Moreover, the varying 

coefficients βj(s) are, respectively, given by

and then they were scaled as β(s)/‖β(s)‖2. We set sm as M = 50 equidistant grid points in 

[0,1] with s1 = 0 and sM = 1. We set  with 

, and . We 

consider two index functions including 

 and .

We conducted extensive simulation studies under different settings, but we only report some 

representative results for the sake of space. First, we set n = 40 and 200 and simulated data 

sets from model (3) for the first index function  as described above. We fitted 

SIVC to each simulated data set and calculated all unknown quantities. Table 1 summarizes 

the mean absolute error (MAE) and root mean square error (RMSE) of all parameter 

estimates and the mean integrated absolute error (MIAE) and mean integrated squared error 

(MISE) of all estimated functions based on 200 simulations. The results in Table 1 indicate 

satisfactory performance of our estimators since all MAE, MSE, MIAE and MISE values are 

quite small. Typical estimated functions with mean performance are displayed in Figure 2 

and Figure 1 in Web Appendix. The estimated curves (broken lines) closely resemble the 

corresponding true functions (solid lines) in these figures. As expected, all the errors 

increase as sample size decreases. Moreover, Table 2 includes the coverage probabilities of 

the simultaneous Confidence bands of βl(s)s and g1(u) for n = 40 and 200 based on 500 

simulations. These coverage probabilities get close to the specified Confidence level 95% as 

sample size increases, while the results for g(·) are slightly worse than those of βl(s).

Second, we illustrate the superiority of SIVC over multivariate varying coefficient model 

(MVCM) in Zhu et al. (2012) in terms of prediction accuracy. We set n = 200 and then 
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simulated data sets from model (3) for both  and . For each 

simulated dataset, we randomly split it into a training set and a test set according to 

proportions π and 1 − π, respectively. We used the training set to estimate all unknown 

parameters, and then predicted the responses in the test set. Finally, we calculated the 

prediction error for each simulated dataset. We consider three values of π including 0.3, 0.5, 

and 0.7. For each case, we repeated 200 times. Table 3 reports the MAE and RMSE of 

prediction errors for SIVC and MVCM. For the index function , SIVC 

significantly outperforms MVCM with smaller MAE and RMSE. Even for , 

SIVC is slightly better than MVCM. It may indicate that SIVC is a useful tool for modeling 

functional data.

4.2 Real Data Analysis

We applied model (3) to the DWI data set described in Section 1. One goal of NIH ADNI is 

to test whether genetic, structural and functional neuroimaging, and clinical data can be 

integrated to measure the progression of mild cognitive impairment (MCI) and early 

Alzheimer’s disease (AD). We downloaded the structural brain MRI data and corresponding 

clinical and genetic data from baseline and follow-up from the ADNI publicly available 

database (http://adni.loni.usc.edu/).

The DWI data were processed by using a FSL TBSS pipeline (Smith et al., 2006) to register 

DTIs from multiple subjects to create a mean image and a mean skeleton. We used FMRIB 

software library to compute maps of fractional anisotropy (FA) for all subjects from the DTI 

after eddy current correction and automatic brain extraction. Then, we fed FA maps into the 

TBSS tool, which is also part of FSL. In the TBSS analysis, we aligned the FA data of all 

the subjects into a common space by using non-linear registration and created and thinned 

the mean FA image to obtain a mean FA skeleton, which represents the centers of all white 

matter tracts common to the group. Subsequently, we projected each subject’s aligned FA 

data onto this skeleton. Finally, we obtained the FA template curve measured at all the 83 

grid points along the skeleton of the midsagittal corpus callosum as shown in Figure 2 in 

Appendix for all the subjects.

We are interested in establishing an association between FA and seven covariates including 

the gender variable (123 male and 91 female, coded by a dummy variable indicating for 

male), the age of the subject (years, ranges from 48.4 (years) to 90.4, mean 73.20), an 

indicator for handiness (193 right-hand and 20 left-hand, coded by a dummy variable 

indicating for left-hand), the education level (years, ranges from 9 to 20 (years), mean 

15.91), an indicator for Alzheimer’s disease (AD) status (19.6%), an indicator for mild 

cognitive impairment (MCI) status (55.1%) and Mini-Mental State Exam (MMSE) of 

ADNI. We standardized all variables to have mean zero and variance one. We fitted model 

(3) and applied the estimation procedure in Section 2 to the data set. Figure 3 presents the 

estimated varying coefficients corresponding to age, education, AD status, and MCI status. 

The results reveal that MMSE, age, education, MCI, and AD are the most important factors. 

Moreover, gender and handiness have little effects on FA.

Luo et al. Page 13

Biometrics. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://adni.loni.usc.edu/


We estimated the single index function g(·) and the covariance function Ση(s, s′) and its 

associated eigenvalues and eigenfunctions. See Figure 1 for details. The single index 

function shows a pattern with small values at the left and right ending points of the range 

 and two modes in the middle of the range. The top five non-zero eigenvalues of 

Σ̂η(s, s′) are 0.8628, 0.2771, 0.0284, 0.0142, and 0.0102, respectively. The first two 

eigenvalues account for 94.8% of the total variability, while the remaining eigenvalues 

rapidly drop to zero. The first eigenfunction, with a dominant eigenvalue accounting for 

71.8% of the total variation, is simple in structure and resembles a single cycle of a sine 

wave. The remaining eigenfunctions are also quite simple and roughly sinusoidal 

representing additional functional structure that cannot be captured by the mean structure of 

model (3).

Finally, we compared the prediction accuracy of SIVC with that of MVCM in Zhu et al. 

(2012). We randomly split the 213 subjects into a training set and a test set with 

corresponding proportions π and 1 − π, respectively. We used the training set to estimate all 

the parameters, and then predicted the responses of the testing set. The 100 replications were 

used to calculate the prediction errors corresponding π = 0.3, 0.5 and 0.7. Table 4 reports the 

MAE and RMSE of the prediction errors and indicates that SIVC significantly outperforms 

MVCM in terms of both MAE and RMSE.

5. Conclusion

In this paper we have developed a single-index varying coefficient model for establishing a 

varying association between functional responses (e.g., image) and a set of covariates. We 

have developed an estimation procedure to estimate varying coefficient functions, link 

function, and the covariance function of individual functions. We have investigated a 

strategy to integrate the information across all grid points. We have used simulations and 

real data analysis to demonstrate that SIVC is a useful tool for modeling functional data.

Many important issues need to be addressed in future research. First, the computational 

burden associated with SIVC can be quite heavy making it infeasible for large-scale imaging 

data at this moment. We will develop more computationally efficient algorithms to address 

such challenge. Second, we need to develop an effective procedure to carry out statistical 

inference, such as hypothesis test. Third, it is scientifically interesting to extend SIVC to 

carry out regression analysis of longitudinal functional data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
ADNI data analysis: raw FA curves measured at 83 grid points (upper-left panel), the 

estimated index function with the broken red lines representing 95% simultaneous 

Confidence bands (upper-right panel), the estimated accumulative proportion of estimated 

eigenvalues (lower-left panel) and estimated eigenfunctions (lower-right panel) 

corresponding to the five largest eigenvalues.
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Figure 2. 
Simulation results for model (3) with the first index function and n = 200: the true and 

estimated varying coefficient functions and the true and estimated index functions. In each 

panel, the solid line represents the true function, the broken line represents the estimated 

function, and the red broken lines are the corresponding 95% simultaneous Confidence 

bands.
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Figure 3. 
ADNI data analysis: the four estimated varying coefficients for Age, Education, AD, and 

MCI. The black solid lines are estimated coefficients and the red broken lines are their 

corresponding 95% simultaneous Confidence bands.
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Table 3

Prediction results corresponding to both index functions g1(XT β(s)) and g2(XT β(s)) with n = 200. MAE is 

mean absolute error and RMSE is root mean square error.

g1(XT β(s)) g2(XT β(s))

MAE RMSE MAE RMSE

π = 0.3

SIVC 1.013 (0.040) 1.282 (0.052) 0.987 (0.042) 1.248 (0.053)

MVCM 1.215 (0.040) 1.530 (0.053) 1.031 (0.045) 1.299 (0.060)

π = 0.5

SIVC 1.002 (0.049) 1.267 (0.063) 0.978 (0.048) 1.236 (0.060)

MVCM 1.207 (0.048) 1.520 (0.065) 1.014 (0.050) 1.278 (0.062)

π = 0.7

SIVC 0.977 (0.068) 1.236 (0.081) 0.966 (0.065) 1.222 (0.082)

MVCM 1.188 (0.063) 1.494 (0.082) 1.006 (0.068) 1.268 (0.084)
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